Swarm intelligent approaches to auto-localization of nodes in static UWB networks
نویسندگان
چکیده
In this paper, we address the problem of localizing sensor nodes in a static network, given that the positions of a few of them (denoted as “beacons“) are a priori known. We refer to this problem as “autolocalization.” Three localization techniques are considered: the two-stage maximum-likelihood (TSML) method; the plane intersection (PI) method; and the particle swarm optimization (PSO) algorithm. While the first two techniques come from the communication-theoretic “world,” the last one comes from the soft computing “world.” The performance of the considered localization techniques is investigated, in a comparative way, taking into account (i) the number of beacons and (ii) the distances between beacons and nodes. Since our simulation results show that a PSO-based approach allows obtaining more accurate position estimates, in the second part of the paper we focus on this technique proposing a novel hybrid version of the PSO algorithm with improved performance. In particular, we investigate, for various popethod lane intersection (PI) method ulation sizes, the number of iterations which are needed to achieve a given error tolerance. According to our simulation results, the hybrid PSO algorithm guarantees faster convergence at a reduced computational complexity, making it attractive for dynamic localization. In more general terms, our results show that the application of soft computing techniques to communication-theoretic problems leads to interesting research perspectives. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Impact of the Number of Beacons in PSO-Based Auto-localization in UWB Networks
In this paper, we focus on auto-localization of nodes in a static wireless network, under the assumption of known position of a few initial nodes, denoted as “beacons”. Assuming that Ultra Wide Band (UWB) signals are used for inter-node communications, we analyze the impact of the number of beacons on the location accuracy. Three different approaches to localization are considered, namely: the ...
متن کاملParticle Swarm Optimization for Auto-localization of Nodes in Wireless Sensor Networks
In this paper, we consider the problem of auto-localization of the nodes of a static Wireless Sensor Network (WSN) where nodes communicate through Ultra Wide Band (UWB) signaling. In particular, we investigate auto-localization of the nodes assuming to know the position of a few initial nodes, denoted as “beacons”. In the considered scenario, we compare the location accuracy obtained with the w...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملBroadcast Routing in Wireless Ad-Hoc Networks: A Particle Swarm optimization Approach
While routing in multi-hop packet radio networks (static Ad-hoc wireless networks), it is crucial to minimize power consumption since nodes are powered by batteries of limited capacity and it is expensive to recharge the device. This paper studies the problem of broadcast routing in radio networks. Given a network with an identified source node, any broadcast routing is considered as a directed...
متن کاملA Swarm Intelligence Approach to 3 D Distance-Based Indoor UWB Localization
Abstract. In this paper, we focus on the application of Ultra Wide Band (UWB) technology to the problem of locating static nodes in threedimensional indoor environments, assuming to know the positions of a few nodes, denoted as “beacons.” The localization algorithms which are considered throughout the paper are based on the Time Of Arrival (TOA) of signals traveling between pairs of nodes. In p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2014